Resistance Grounding

Joe Campa Regional Sales Manager

"The Resistor Specialists"

Post Glover

- Headquartered in Erlanger, KY (Cincinnati suburb)
 - In business since 1892
 - 105,000 sq.-ft. facility
 - Workforce of 100+ people
 - 13 engineers on staff
- Largest Global Manufacturer of Power Resistors
 - All Fabrication Done on-Site
 - Total Control Exercised Over Processes
- Excellent Reputation for Quality & Service
 - Certified ISO-9001:2015
 - Products certified by CSA and UL

What we do

- Neutral Grounding
- Motor Control
- Dynamic Braking
- Filter Resistors
- Transit

"The Resistor Specialists"

Overview

Three Types of System Grounding

- Ungrounded (Capacitive Grounded) Systems
- Solidly Grounded Systems
- Resistance Grounding

System Failures on Industrial Power Systems

Failure Mode	Percentage of Failures
Line to Ground	98%
Phase to Phase	< 1.5%
Three Phase	< 0.5%

Data per CapSchell

Ungrounded (Capacitive Grounding)

Ungrounded Power Systems

- Allows continuity of power in the event of a line-to-ground fault
 - Fault only grounds the system
 - Very low current would flow
 - Circuit breakers and fuses will not open
- Faults easy to find but time-consuming
- Line-to-ground voltage could exceed lineto-line voltage by several times in an arcing fault condition

Wye Connected System

"The Resistor Specialists"

System Capacitance

A capacitor is an electrical device that can store energy in the electric field between a pair of closely spaced conductors

• Capacitance re-charges during an arcing fault, creating a larger overvoltage

 $\boldsymbol{\cdot}$ Overvoltage stresses insulation, leading to further faults

(Thank you, Wikipedia)

Industry Recommendations

IEEE Std 242–2001 (Buff Book)

Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems

Ungrounded Systems

8.2.5 If this ground fault is intermittent or allowed to continue, the system could be subjected to possible severe over-voltages to ground, which can be as high as six to eight times phase voltage. Such over-voltages can puncture insulation and result in additional ground faults. These over-voltages are caused by repetitive charging of the system capacitance or by resonance between the system capacitance and the inductance of equipment in the system.

Solidly Grounded

Solidly Grounded Systems

- Advantages
 - Fixed line to ground voltage
 - Diminished overvoltage danger in arcing fault conditions
 - Permit line-to-neutral loads

- Disadvantages
 - Danger from low-level-arcing faults
 - Strong shock hazard to personnel
 - Unscheduled service interruption

Arc Faults

- Usually caused by insulation breakdown, creating an arc between phase to ground.
- Intense energy is not well contained and can be very destructive.

"The Resistor Specialists"

IEEE – Arcing Faults

IEEE Std 242–2001

Recommended Practice for the Protection and Coordination of Industrial and Commercial Power Systems 8.2.2

One disadvantage of the solidly grounded 480 V system involves the high magnitude of destructive, arcing ground-fault currents that can occur.

IEEE Std 141–1993

Recommended Practice for Electric Power Distribution for Industrial Plants 7.2.4

The solidly grounded system has the highest probability of escalating into a phase-to-phase or three-phase arcing fault, particularly for the 480 and 600 V systems. The danger of sustained arcing for phase-toground fault...is also high for the 480 and 600 V systems, and low or near zero for the 208 V system. A safety hazard exists for solidly grounded systems from the severe flash, arc burning, and blast hazard from any phase-to-ground fault.

Resistance Grounding

Advantages of Resistance Grounding

- Greater safety for personnel and equipment
- Increased service reliability
- Lower operating and maintenance expense
- Reduced magnitude voltage transients
- Simplified ground-fault location

Resistance Grounding

Low Resistance

- Less than 1000 amps for ten seconds
- Safely shutdown
- Less damage than solidly grounded

High Resistance

- Less than 10 amps continuously
- Avoid shutdowns
- Least damage

Considerations for Grounding Resistors

No Single Phase Loads

No line-to-neutral loads allowed, prevents Hazards. 480V Wye Source

Elevated Voltage Hazard

Properly rated equipment prevents Hazards.

Over-voltage protection selection

- Line to Ground connected MOV's should be removed
- Line to Line MOV's should be configured similar to Delta connected system

VFD's

Remove jumpers

ATTENTION: When installing a drive on an ungrounded, high-resistance or B phase grounded distribution system, disconnect the phase-to-ground MOV circuit and the common mode capacitors from ground.

Phase to Ground MOV Removal

Three-Phase AC Inc	put	•	F	Frame	Jumper	Removes
	+	+	+	A, B, C and D	JP3 – JP2	MOV to Ground
Jumper 1 (See Table)	2	3	4 ¥	E	JP2 – JP1	MOV and Line to Line Capacitors to Ground

Common Mode Capacitors to Ground Removal

	Converter DC+ DC-	ors Jumper (See Table)
Frame	Jumper	Removes
A	N/A	
В	JP6 – JP5	Common Mode Capacitors to Ground
C and D	JP3B – JP3A	Common Mode Capacitors to Ground
E	JP3 – JP4	Common Mode Capacitors to Ground

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Bockwell Automation, 1201 South Second Street, Milbouckee, WT 53204-2466 USA, Tel. (1): 414-382.2000, Dax: (1): 414-382.4444 Europe/Middle East/Africa: Bockwell Automation, Vorstlaam/Bodlevard du Souveriani 36, 1170 Brusset, Belgium, Tel. (22): 2663 0000, Dax: (23): 2663 00610 asia: Bochin: Gockwell Automation, Level 14, Gore R. Cyberror R Mond. Hong Brute, Bru

Publication 20A-DU006B-EN-P - February 2007 Supersedes December 2006 Copyright © 2007 Rockwell Automation, Inc. All rights reserved. Printed in USA.

No Neutral?

Zig-Zag Transformer

- High impedance to normal phase currents
- Low impedance to fault current
- Duty cycle same as resistor

Wye Delta Grounding Transformer

- Uses 3 industrial control transformers
- Connect to create neutral
- Low voltage resistor
- Medium voltage can be done using broken delta configuration

Resistance Grounding

Low Resistance and High Resistance

Low Resistance Grounding

Low Resistance Grounding (LRG)

Used on Medium Voltage

- Some 5kV systems
- Mainly 15kV systems
- System charging current may be too high for High Resistance Grounding (HRG)

Ground Fault

- Current typically limited to 25 400A
- Typically Trip within 10 seconds to reduce damage

Duty Ratings for NGR's

IEEE Std 32

Time Rating and Permissible Temperature Rise for Neutral Grounding Resistors

Time Rating (On Time)	Temp Rise (deg C)
Ten Seconds (Short Time)	760°C
One Minute (Short Time)	760°C
Ten Minutes (Short Time)	610°C
Extended Time	610°C
Continuous	385°C

Increased Fault Time Requires Larger Resistor

Duration Must Be Coordinated With Protective Relay Scheme

Specifying an LRG

- Technical information required
 - Line-to-neutral voltage for Resistor
 - Line-to-line voltage for Grounding Transformer
 - Rated current
 - Vented Enclosure type (Nema vs. IEC)
 - Resistor must 'breathe'
 - CTs and Relays
 - Neutral or Ground side of Resistor

Common options

- Enclosure rating
- Enclosure finish
- Current transformer
- Potential transformer
- Disconnect switch
- Entrance/exit bushings
- Elevating stand
- Seismic rating
- Hazardous area classification
- Third party certification

High Resistance Grounding

High Resistance Grounding

- Impedance selected to limit line-toground fault current (normally < 10A)
- Allows faulted circuit to continue operation
- No transient over-voltages
- Maintenance personnel can easily track the fault

Specifying an HRG

Same basic information as LRG

Low Voltage HRG PulserPlus.Net

LV HRG Control Features

- Data Logging
- Alarm Settings
- Automated charging current calculation
- Pulsing Capability
- 3–Phase Monitoring
- Available Ethernet communication

Data Logging

 Records up to 200 alarms with date and time. Helpful in tracking down nuisance alarms.

Alarm Settings

- Settings for overvoltage, overcurrent with a time delay setting.
- Ability to allow for customization of alarm settings in order to avoid nuisance alarms.

Charging Current Button

 The push of a button automatically calculates the system charging current for you.

Importance of Charging Current

In a high resistance grounded system, the resistance must be low enough to allow the system capacitance to discharge relatively quickly.

Only discharges if $R_o < X_{co}$, so $I_r > I_{xco}$ (per IEEE142-2007 1.2.7)

That is, *resistor current* must be greater than *capacitive charging current*.

Pulsing Capability

- When activated, contactor alternately shorts the resistor and forces the current to increase to the pulse level
- Use ammeter to track the current fluctuation

Fault Location

Method to (relatively) quickly locate ground faults.

3-Phase Monitoring

- Monitors each phase and indicates which phase is faulted
- Knowing the faulted phase can assist with troubleshooting and repair

Ethernet Communications

- Ethernet
 - communications allows our unit to easily network using TCP/IP.
- Also, includes ports for RS232, RS422 and RS485

Unit Features

- Tapped Resistor
- Resistor Monitor
- UL Listed
- Switched Neutral is standard with a Solid Neutral available at customer request

Tapped Resistor Settings

- Choose fault current higher than capacitive charging current with tap settings at 2,3,4, 5, 6 and 8 Amps. The last setting of 10 Amps is save for the pulsing circuit.
- Ex. If charging current is determined to be 1.5 A, choose at least 2 Amps of fault current.

Resistor Monitoring

 Open Circuit Detection
Active - Checks every 60 seconds, places a voltage across the system and compares to healthy state value

Feeder Monitoring System (optional) USES TOUCH SCREEN PLC FOR EASE OF OPERATION

- Touch Screen control for ease of additional inputs
- User programmable alarm levels
- Same communication capabilities of PulserPlus.Net

Feeder Monitoring System MONITOR STATUS OF UP TO EIGHT FEEDERS

- Each feeder name can be up to 8 characters in length
- Displays real-time status of each phase and feeder during a fault.
- Provides relay outputs identifying faulted feeders for customer use.

Communication with Feeder relays

Unit Availability

- NEMA 1
- NEMA 3R
- OEM Kit
- Wall-Mounted

Free Standing

OEM Kit

Wall Mounted Unit

Connections:

MV HRG

MV Digital Control

- Data Logging
- Alarm settings
- Pulsing
- Available Ethernet

Summary

- Know your system before converting to resistance grounding
- Ask questions "what we always do" might not work
- Let us help!

